/ miércoles 1 de agosto de 2018

Pirámide de Giza ¡sí puede concentrar energía!

Ahora tienen en mente lanzar la aplicación práctica en nanosensores y células solares efectivas

La Gran Pirámide de Giza, en Egipto, puede concentrar energía electromagnética en sus cámaras internas, así como también debajo de su base, donde se encuentra la tercera cámara inacabada.

Un grupo de investigación internacional, liderado por la Universidad ITMO de San Petersburgo, ha aplicado métodos de física teórica para investigar la respuesta electromagnética de la Gran Pirámide a las ondas de radio. Los científicos predijeron que, bajo condiciones de resonancia, la pirámide puede concentrar energía electromagnética en sus cámaras internas y debajo de la base.

El grupo de investigación planea usar estos resultados teóricos para diseñar nanopartículas capaces de reproducir efectos similares en el rango óptico. Tales nanopartículas pueden usarse, por ejemplo, para desarrollar sensores y células solares altamente eficientes. El estudio fue publicado en el Journal of Applied Physics.

Mientras que las pirámides egipcias están rodeadas de muchos mitos y leyendas, los investigadores tienen poca información científicamente confiable sobre sus propiedades físicas.

Recientemente, los físicos se interesaron en cómo la Gran Pirámide interactuaría con ondas electromagnéticas de longitud resonante. Los cálculos mostraron que en el estado resonante, la pirámide puede concentrar energía electromagnética en sus cámaras internas, así como también debajo de su base, donde se encuentra la tercera cámara inacabada.

Estas conclusiones se derivaron sobre la base del modelado numérico y los métodos analíticos de la física. Los investigadores primero estimaron que las resonancias en la pirámide pueden ser inducidas por ondas de radio con una longitud que va de 200 a 600 metros.

Luego hicieron un modelo de la respuesta electromagnética de la pirámide y calcularon la sección transversal de extinción. Este valor ayuda a estimar qué parte de la energía de la onda incidente puede ser dispersada o absorbida por la pirámide en condiciones de resonancia. Finalmente, para las mismas condiciones, los científicos obtuvieron la distribución del campo electromagnético dentro de la pirámide.

Para explicar los resultados, los científicos realizaron un análisis multipolar. Este método es ampliamente utilizado en física para estudiar la interacción entre un objeto complejo y un campo electromagnético. El objeto que dispersa el campo se reemplaza por un conjunto de fuentes de radiación más simples: multipolares.

La colección de radiación multipolar coincide con la dispersión del campo por un objeto completo. Por lo tanto, conociendo el tipo de cada multipolo, es posible predecir y explicar la distribución y configuración de los campos dispersos en todo el sistema.

La Gran Pirámide atrajo a los investigadores mientras estudiaban la interacción entre la luz y las nanopartículas dieléctricas. La dispersión de la luz por nanopartículas depende de su tamaño, forma e índice de refracción del material fuente. Variando estos parámetros, es posible determinar los regímenes de dispersión de resonancia y usarlos para desarrollar dispositivos para controlar la luz a nanoescala.

Ahora, los científicos planean usar los resultados para reproducir efectos similares a nanoescala.

"Al elegir un material con propiedades electromagnéticas adecuadas, podemos obtener nanopartículas piramidales con la promesa de aplicación práctica en nanosensores y células solares efectivas", dice Polina Kapitainova, miembro de la Facultad de Física y Tecnología de la Universidad ITMO.

La Gran Pirámide de Giza, en Egipto, puede concentrar energía electromagnética en sus cámaras internas, así como también debajo de su base, donde se encuentra la tercera cámara inacabada.

Un grupo de investigación internacional, liderado por la Universidad ITMO de San Petersburgo, ha aplicado métodos de física teórica para investigar la respuesta electromagnética de la Gran Pirámide a las ondas de radio. Los científicos predijeron que, bajo condiciones de resonancia, la pirámide puede concentrar energía electromagnética en sus cámaras internas y debajo de la base.

El grupo de investigación planea usar estos resultados teóricos para diseñar nanopartículas capaces de reproducir efectos similares en el rango óptico. Tales nanopartículas pueden usarse, por ejemplo, para desarrollar sensores y células solares altamente eficientes. El estudio fue publicado en el Journal of Applied Physics.

Mientras que las pirámides egipcias están rodeadas de muchos mitos y leyendas, los investigadores tienen poca información científicamente confiable sobre sus propiedades físicas.

Recientemente, los físicos se interesaron en cómo la Gran Pirámide interactuaría con ondas electromagnéticas de longitud resonante. Los cálculos mostraron que en el estado resonante, la pirámide puede concentrar energía electromagnética en sus cámaras internas, así como también debajo de su base, donde se encuentra la tercera cámara inacabada.

Estas conclusiones se derivaron sobre la base del modelado numérico y los métodos analíticos de la física. Los investigadores primero estimaron que las resonancias en la pirámide pueden ser inducidas por ondas de radio con una longitud que va de 200 a 600 metros.

Luego hicieron un modelo de la respuesta electromagnética de la pirámide y calcularon la sección transversal de extinción. Este valor ayuda a estimar qué parte de la energía de la onda incidente puede ser dispersada o absorbida por la pirámide en condiciones de resonancia. Finalmente, para las mismas condiciones, los científicos obtuvieron la distribución del campo electromagnético dentro de la pirámide.

Para explicar los resultados, los científicos realizaron un análisis multipolar. Este método es ampliamente utilizado en física para estudiar la interacción entre un objeto complejo y un campo electromagnético. El objeto que dispersa el campo se reemplaza por un conjunto de fuentes de radiación más simples: multipolares.

La colección de radiación multipolar coincide con la dispersión del campo por un objeto completo. Por lo tanto, conociendo el tipo de cada multipolo, es posible predecir y explicar la distribución y configuración de los campos dispersos en todo el sistema.

La Gran Pirámide atrajo a los investigadores mientras estudiaban la interacción entre la luz y las nanopartículas dieléctricas. La dispersión de la luz por nanopartículas depende de su tamaño, forma e índice de refracción del material fuente. Variando estos parámetros, es posible determinar los regímenes de dispersión de resonancia y usarlos para desarrollar dispositivos para controlar la luz a nanoescala.

Ahora, los científicos planean usar los resultados para reproducir efectos similares a nanoescala.

"Al elegir un material con propiedades electromagnéticas adecuadas, podemos obtener nanopartículas piramidales con la promesa de aplicación práctica en nanosensores y células solares efectivas", dice Polina Kapitainova, miembro de la Facultad de Física y Tecnología de la Universidad ITMO.

Local

¡Golfo de Santa Clara se tiñe de plata! Inicia el espectacular desove del pejerrey

Este es uno de los pocos lugares en el mundo donde se puede presenciar esta maravilla de la naturaleza

Campo

Destino incierto: 65 millones de dólares para enfrentar crisis hídrica en San Luis y Mexicali

Hasta ahora, no se sabe qué tipo de obras se harán con ese fondo que aportarán los estadounidenses, ahora que se viene el recorte de agua

Local

Niñas, niños y adolescentes en Sonora: cifras de INEGI revelan retos y vulnerabilidades

También, en ese año, aproximadamente 43 mil menores de edad estaban desempeñando algún trabajo

Elecciones 2024

Movimiento Ciudadano apuesta por recuperar el programa DARE en San Luis

La candidata a la presidencia municipal Rebecca Ching asegura que los programas de prevención del delito serán prioridad para ella y para el partido

Policiaca

Automovilista es asesinado en la colonia Argentina

Fue interceptado por hombres armados al Sur de la ciudad, quienes le arrebataron la vida

Local

Lefty SM Inmortalizado en un Mural: Un Tributo a su Trayectoria y Legado

Su madre quería inmortalizar la esencia y el espíritu de su hijo en cada trazo, así como otros símbolos que fueron marcando su trayectoria antes y después del rap